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Abstract
Pole vaulting, the aim of which is to jump over a crossbar with the help of a
long flexible pole, is considered to be one of the most complicated and
technically demanding motions in track and field athletics. Pole vault
performance is basically influenced by the energy exchange between the
vaulter and pole. It depends on the sprinting, jumping and acrobatic abilities
of the athlete. Less well-known, but just as exciting and fascinating, is pole
vaulting for distance. The aim in this sports event, named fierljeppen in the
Frisian language, is to jump as far as possible with the help of a long pole.
Athletes reach heights of 11.5 m and the record jumping distance is currently
22.21 m. In this paper, we present a simplified mathematical model of the
motion of vaulter and pole based on classical mechanics. This model helps
us understand the dynamics of pole vaulting for distance and optimize the
athlete’s performance by looking for the optimal speed of running-up toward
the pole and the optimal release angle.

Keywords: classical mechanics, pole vaulting for distance, mathematical modelling

1. Fierljeppen: pole vaulting for distance
Pole vaulting is a sport with a long history [1, 2].
Best known is the pole vault as an event per-
formed in track and field athletics, wherein the
athlete uses a flexible pole to clear a crossbar
resting on two pegs supported by two standards.

Original content from this work may be used
under the terms of the Creative Commons

Attribution 4.0 licence. Any further distribution of this work
must maintain attribution to the author(s) and the title of the
work, journal citation and DOI.

The vaulter’s aim is then to attain the greatest
height and for this purpose (s)he must apply great
sprinting, jumping and acrobatic abilities.

The origin of pole vaulting is historically the
use of a spear by a soldier to vault onto horse-
back and the use of a pole to leap over obstacles.
The most common obstacle is not a hedge, a wall
or another type of barrier in height, but a ditch,
river or canal. Canal jumping using a pole can be
traced back to the marshy provinces around the
North Sea and the Fens of Cambridgeshire, Lin-
colnshire and Norfolk. This gave rise to the sports
event of leaping with a pole for distance instead

1361-6552/20/045007+16$33.00 1 ©2020TheAuthor(s). Published by IOPPublishing Ltd

http://iopscience.org/ped
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6552/ab7fc7&domain=pdf&date_stamp=2020-04-29
mailto:a.j.p.heck@uva.nl
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


A Heck and P Uylings

of height. Leaping for height became an Olympic
event in track and field athletics. Leaping for dis-
tance turned into a folkloric event and only in the
Netherlands it remained a traditional sport called
fierljeppen (a West-Frisian compound of fier—
far, ljeppen—leaping). Fierljeppen was officially
recognised as a part of the Frisian cultural heritage
by UNESCO in 2018.

If you find an athlete vaulting over a crossbar
at a height a spectacular view, imagine a vaulter
using a 13 m long pole of about 20 kg to reach
a height of 11.5 m and attain a distance 20 m
or more. Much courage and technique is needed
for such a performance. Of course, the fierljep-
per does not run with such a long heavy pole on
a runway to place one end of the pole in a plant-
box, as in pole vaulting for height. To get a good
impression of how a pole vault for distance is
arranged in a fierljep sport event, you can watch
on YouTube the jump of Jaco de Groot, leading
to the record distance of 22.21 m (just enter the
keywords ‘world record’ and ‘fierljeppen’ to find
a video clip of this jump). Imagine:

• the speed of about 30 km h−1 at which this
athlete is sprinting on the runway,

• the fearless jump against the pole, which has
been placed beforehand with one end firmly
in a gravel bank underneath the water surface
and kept at a preferred distance away from
the take-off point on the runway by the pole
holder using a pitchfork,

• the precision, strength, and technique that he
uses to grab the 10 cm thick pole and get the
pole between his legs, while keeping his body
posture such that he and the pole do not devi-
ate to the left or right,

• the muscle power and motion control he needs
to climb to the end of the pole in a short time
and reach a height of about 11.5 m while con-
trolling the tipping motion of the pole in the
straightforward direction and restricting the
lateral movement of the pole,

• the technique to push himself off from the pole
in order to leap extra decimetres, and

• the courage to land preferably sideways in
order to break the fall with his body and avoid
injuries of arms and legs.

In figure 1, we visually present the different
phases of the jump and add some details based
on regulations of official sport events [3]. The

jumping distance is measured from the end of
the runway to the nearest break in the sand. Not
shown in the drawing is the trainer/coachwho runs
behind the vaulter on the runway to encourage
and coach the athlete. The pole holder keeps the
pole at a distance from the end of the runway that
is preferred by the vaulter so that (s)he can grab
the pole at the highest point, in order to minim-
ize the distance to climb to the top of the pole,
while still being able to let the pole tip over to
the other side of the water. The pole holder pulls
back the pitchfork that holds the pole as soon as
the vaulter catches the pole. The pole holder also
warns for danger so that the vaulter can release the
pole in time and fall into the water without any
harm done.

The performance of pole vaulting for height
is basically influenced by the energy exchange
between the vaulter and pole. It depends on the
sprinting, jumping and acrobatic abilities of the
athlete [4–6]. Similarly, the performance of pole
vaulting for distance is influenced by the exchange
of energy between the vaulter and pole, and it
depends on the sprinting, jumping, climbing and
motion control abilities of the athlete.

We present in this paper a mathematical
model of the motion of vaulter and pole based
on classical mechanics. We use this model to cre-
ate computer simulations of the vaulter’s motion
under various conditions. These simulations help
us understand the dynamics of pole vaulting for
distance and give advice to optimize the ath-
lete’s performance. We discuss what would be the
optimal speed of running-up toward the pole: not
too fast because the vaulter then does not have
enough time to climb up the pole; not too slow
because the pole then does not pass its tipping
point tomove across thewater and the athletemust
let go and fall into the water. We also use the com-
puter model to predict the optimal angle of the
pole at which the athlete pushes off against the
pole to land furthest in the sand bed. The mod-
elling activities show how physics can help study
such kinds of biomechanical problems and inform
trainers and athletes.

2. Modelling fierljeppen
The modelling process starts with (1) having a
close look at the conditions under which the sport
event takes place and how they affect the motion
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Figure 1. Six phases in pole vaulting for distance under conditions (height of runway, water level, height of sand
bed, length of the pole, etc) allowed according to game regulations and favourable for attaining long distances.

of the vaulter and pole; (2) making sensible
assumptions so that a mathematical model can be
constructed that is simple and yet provides useful
results for understanding the athlete’s movements,
and for giving advice on how to optimize the
performance; and (3) lingering upon and decid-
ing which quantities are relevant to include in the
mathematical model, so that they can be used to
answer the biomechanical questions raised.

2.1. Dimensions of the fierljep
accommodation, the pole and the athlete

The game regulations of the Dutch Fierljep Asso-
ciation [3], with about 600 active athletes, pre-
scribe the dimensions of the accommodation for
non-recreative fierljeppen. Information about fier-
ljeppen can also be found in the periodical pub-
lished by the association (see for example [7]).
The height of the runway is between 3.60 and
4.00 m, measured with respect to the upper level
of the gravel bank in which the pole is firmly
placed before the jump takes place and which is
2–6 metres away from the end of the runway.
The maximum length of the pole is 13.25 m and
the maximum diameter above the bottom part is
12.5 cm. Although the material choice for the pole
is free, top athletes use a carbon pole with a mass
of about 20 kg. The water level above the gravel

bank is between 1.70 and 2.00 m. The sand bed
is at least 5 cm above the water level. The best
conditions for attaining long jumping distances
are accommodations with the highest runway, the
lowest sand bed, and the lowest water level (also
for reduction of the water resistance), and the use
of the longest, rather rigid pole (see figure 1).

Before the jump, the vaulter decides how to
place the pole and at what pole height, i.e. the dis-
tance from the bottom of the pole, (s)he intends
to grab the pole. A larger pole height means that
(s)he has to climb less to reach the top of the
pole. But there is a catch: a larger pole height
also means that the angle between the pole and
the horizontal gravel bank gets smaller so that it
becomes more difficult, that is, greater running
speed and a larger take-off impulse are required
from the vaulter to let the pole tip over to the other
side of the water.

When the pole holder places the pole about
2–3 metres away from the end of the runway,
the pole is less slanted, that is, the angle between
the pole and the horizontal gravel bank is larger
so that the pole will tip over more easily. In this
case, the athlete jumps towards the pole, grabs
it with both hands and via a pendular motion of
the rest of the body gets close to the pole and
places it between their legs. Hereafter, (s)he can
start climbing towards the top of the pole. The
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Figure 2. Visualization (not drawn to scale) of the
change of the pole angle when a pole holder keeps the
pole away from the end of the running platform with a
pitchfork.

main advantage of reduction of kinetic energy that
can be transformed into rotational energy is not at
the expense of the jumping distance because it is
still measured from the end of the runway with
the bottom part of the pole at the same position
in the gravel bank as before. A drawback is of
course that the jumping technique becomes more
complicated and requires more muscle power and
motor skills from the athlete to keep control over
the quality of the jump.

To get a quantitative view on the effect
of positioning the pole away from the end of
the runway at a height of 4 m, we consider a
vaulter who reaches upright with his hands at
a height of 2.24 m to the pole resting against
the end of the runway and touches it at a pre-
determined pole height of 11.25 m; see the left-
hand side of figure 2. Using the similarity of tri-
angles and Pythagoras’ theorem, it is a secondary
school exercise to compute the horizontal distance
between the end of the runway and the bottom of
the pole (see section 4.1). Trigonometry and use
of a calculator give a pole angle of 34◦. When a
pole holder keeps the pole 3 m away from the end
of the runway, the pole angle becomes 53◦; see
the right-hand side of figure 2.

2.2. Minimum sprinting speed without
climbing

By using basic principles of physics and simple
models of the vaulter-pole system, we can already
analyse the fierljep jump. For example, we can
determine a lower bound of the sprinting speed of
the vaulter needed to let the vaulter-pole system

tip over to the other side, by applying the law of
conservation of energy.

The modelling process starts with under-
standing the real situation of a fierljep jump by
observing several video clips of jumps so that
we get a mental model of the real situation.
This leads to the idea that, for finding this lower
bound, we can focus on the motion between
the moment that the vaulter has grabbed the pole
and placed it between the legs, and the moment
that the vaulter-pole system has reached a vertical
orientation.

The next modelling phase consists of struc-
turing, making assumptions, and simplifying to
turn the situational model into a real model. For
example, we can consider a model of the vaulter
as a point mass or as a one-segment body consist-
ing of a slim, uniform cylinder. Note that these
two models of the vaulter are merely mathemat-
ical models, which have little resemblance to real-
ity, but nevertheless serve the purpose of analys-
ing the motion of the vaulter-pole system. The
pole is modelled as a long, perfectly rigid rod
with uniformweight distribution. For determining
a lower bound of the vaulter’s sprinting speed, we
may ignore friction in air and water, and assume
that the vaulter does not climb towards the top
of the pole, because physics of rotational motion
informs us that more kinetic energy is needed to
let the vaulter-pole system reach a vertical orient-
ation. In other words, we focus on the first phase
of an inverted pendular motion of a rigid body, as
shown in figure 3.

We move on to use basic concepts of math-
ematics and physics to mathematize and trans-
form the real model into a mathematical model.
Under the assumptions made, we can determine
a lower bound of the speed of the vaulter needed
to let the jumper-pole system tip over in the form
of a formula in the following variables: mass of
the jumper (M), mass of the pole (m), the ini-
tial pole angle (θ0), pole length (L), pole height
of the centre of mass of the jumper (r0) meas-
ured from the bottom end of the pole, speed of the
jumper (v) perpendicular to the pole when (s)he
has grabbed the pole and placed it between the
legs. We can focus on the speed of the jumper
perpendicular to the pole at the start of the inver-
ted pendular motion, because this one is only rel-
evant for the rotational motion (the gravel bank
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Figure 3. Side-view schematic drawing of the math-
ematical model. The vaulter is modelled as a one-
segment body consisting of a slim, uniform cylinder
of mass M that does not move to the top of the pole,
but sticks to its original position at pole height r0 dur-
ing the forwardmotion toward the vertical position. The
pole is modelled as a perfectly rigid rod of length L and
weight m.

dissipated the kinetic energy associated with the
velocity component parallel to the pole) and the
sprinting speed needed will always be greater
than this.

Assuming a 100% efficiency of energy trans-
fer, we can apply the law of conservation of energy
and set the total energy of the vaulter-pole system
at the initial pole angle θ0 equal to that at the pole
angle of 90◦ when the system has reached the ver-
tical orientation with hardly any forward motion
left. In these two situations, we only have to con-
sider kinetic energy and potential energy due to
gravity. We set the gravitational potential energy
to zero at the bottom end of the pole placed in the
gravel bank. At the start, when the pole angle is θ0,
the total energy consists of the kinetic energy of
the jumper and the potential energy of the jumper
and the pole. Ignoring that the vaulter’s centre
of mass is not exactly located on the pole, we
can derive the following expression for the total
energy at pole angle

θ0 :
1
2
Mv2 +Mgr0 sinθ0 +

1
2
mgLsinθ0

When the vaulter-pole system has reached the ver-
tical orientation with hardly any forward motion
left, we only have to take into account the potential
energy of the vaulter and the pole in the expression
for the total energy at pole angle

90◦ :Mgr0 +
1
2
mgL

Conservation of energy leads to the following
equation:

1
2
Mv2+

(
Mr0+

1
2
mL

)
gsinθ=

(
Mr0+

1
2
mL

)
g

This can be rewritten as

v2 =
(
2r0 +

m
M
L
)
g(1− sinθ) .

So, the speed of the vaulter perpendicular to the
pole needed to get the vaulter-pole system in
upright position is

vmin =

√(
2r0 +

m
M
L
)
g(1− sinθ).

Substitution of reasonable values (in SI units)
of the variables for a professional vaulter, say

r0=8,m=20,M=75, L=13.25,g=9.81, θ=50◦,

gives

vmin ≈ 6.70m s−1 ≈ 24.1km h−1.

Thus, the sprinting speed of the vaulter on the
platform is expected to be at least 24.1 km h−1

at the end of the runway. It is in reality probably
closer to 30 km h−1. Quite a performance!

From the above formula for the minimum
angular speed, we can also draw the follow-
ing conclusions: more speed is needed when the
pole is longer or heavier, when the pole angle
is smaller, when the vaulter weighs less, and
when the vaulter grabs the pole at a larger pole
height. Pole vaulting is easier on the moon when
you only take the acceleration of gravity into
account.
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2.3. Dynamics when a vaulter climbs to the
top of the pole

The modelling process of the fierljep jump dis-
cussed in the previous subsection has increased
our confidence in this way of mathematical mod-
elling, but it lacks the power to describe the
dynamics of the motion and in particular what
happens when the vaulter starts climbing. In other
words, we must derive the equations of motion
that correspond with an extended mathematical
model. Rotation mechanics of a rigid body puts us
here on the right track, just as in rigid-pole models
of the take-off phase in pole vaulting for height
[8, 9]. In order to keep the mathematical formulas
in the model as simple as possible, we henceforth
use radian instead of degree as the unit for angle
of rotation.

We extend our mathematical model of the
previous subsection as follows. For the vaulter-
pole system, once the vaulter has a firm grip
with arms and legs on the pole, we focus on the
angle of rotation (θ) of the system, which is con-
sidered equal to the pole angle, the angular velo-
city (ω = θ ′), and the moment of inertia (I). At the
start of the motion, the angle of rotation and angu-
lar velocity are θ0 and ω0, respectively, and the
vaulter’s centre of mass is at the initial pole height
r0. When the angle of rotation is between 1

2π−β

and 1
2π+β, for some positive angle β ⩽ 1

2π− θ0,
then the vaulter climbs to the top of the pole at
a constant velocity u along the pole. The vaulter
stops when (s)he has reached the top of the pole
or when the angle of rotation reaches the value
1
2π+β. The vaulter is modelled as a one-segment
body consisting of a slim, uniform cylinder of
length l and diameter d positioned at distance r
from the bottom of the pole and having weightM.
Figure 4 is a schematic drawing of what goes on
in the motion.

In this case, it is best to start Newton’s law of
rotational motion, which states that the derivative
of the angular momentum equals the torque:,

(I ·ω)′ = τ,

where τ is the sum of all relevant torques for the
vaulter-pole system. Because the vaulter climbs to
the top of the pole, the moment of inertia I is not
constant. Thus, the above equation can be rewrit-
ten as:

Figure 4. Side-view schematic drawing of the math-
ematical model for describing the dynamics of the fier-
ljep jumpwhile the vaulter is still in touch with the pole.
The vaulter is modelled as a one-segment body consist-
ing of a slim, uniform cylinder of massM at pole height
r during the forward motion that moves to the top of the
pole. The pole is modelled as a perfectly rigid rod of
length L and weight m.

I′ ·ω+ I ·ω′ = τ,

and in terms of angle of rotation θ as

I′ · θ′ + I · θ′′ = τ.

The torque, being the product of the force act-
ing on a body and the perpendicular distance of
the axis of rotation from the line of action of the
force, consists of two components associated with
the vaulter and the pole at which gravitational
force acts:

τ = τvaulter + τpole
= −Mgrcos(θ)−mg

(
L
2

)
cos(θ)

= −
(
Mr+ 1

2mL
)
gcos(θ)

The moment of inertia I is the sum of the moment
of inertia of the vaulter (Ivaulter) and the moment
of inertia of the pole (Ipole) about the bottom end
of the pole placed in the gravel bank. Because the
pole is modelled as a thin rigid rod of length L
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pivoting about one of its end, the moment of iner-
tia of the pole (look it up in a classical mechanics
textbook, or calculate it) is

Ipole =
1
3
mL2.

The moment of inertia of a cylinder of mass M,
length l and diameter d about the centre of mass is
given by

ICM =
1
48
M
(
3d2 + 4l2

)
.

Assuming that the vaulter’s model as a cylin-
der is mostly determined by the head and torso,
we can take d≈ 0.29m and l≈ 0.92m for a
1.80m tall person [10]. Then the first term is
small compared to the second one (7% contribu-
tion to the total value) and the formula can be
approximated by:

ICM ≈ 1
12
Ml2,

which is actually the formula for the moment
of inertia of a thin rigid rod of mass M and
length l about the centre of mass. The parallel
axis theorem gives the moment of inertia at a pole
height r:

Ivaulter =
1
12
Ml2 +Mr2 =M

(
1
12
l2 + r2

)
Knowing that the pole height r is 10 metres or
more for a professional vaulter, it is clear that
we can approximate the moment of inertia of the
vaulter by

Ivaulter ≈Mr2.

In other words, we could have modelled the
vaulter as a point mass, but this conclusion fol-
lows from our reasoning during the modelling
process and could not so easily have been made
in advance.

Combining the formulas, we get the follow-
ing formula for the moment of inertia I of the
vaulter-pole system:

I=
1
3
mL2 +Mr2.

The derivative of I is given by

I′ = 2Mr · r′ = 2Mru,

provided that 1
2π−β ⩽ θ ⩽ 1

2π+β, r⩽ L, and u
is the climbing speed of the vaulter.

So, the derived equation of motion is the fol-
lowing boundary problem:

I′ · θ′ + I · θ′′ =−
(
Mr+

1
2
mL

)
gcosθ,

θ (0) = θ0, θ
′ (0) = ω0,

where

I=
1
3
mL2 +Mr2, h(0) = h0

and

I′=

{
2Mru when 1

2π−β ⩽ θ ⩽ 1
2π+β, r⩽ L

0 otherwise

3. Computer simulation of the motion of
the vaulter-pole system
The equation of motion of the vaulter-pole sys-
tem derived in subsection 2.3 cannot be solved
analytically. But there are alternatives: one can
implement the forward Euler solution method in a
spreadsheet program, solve the differential equa-
tion numerically in a mathematical software sys-
tem, or use more specifically a graphical, sys-
tem dynamics-based modelling environment. We
have chosen the third option, using the graphical
modelling tool of Coach [10, 11], because this is
one of the most convenient options at a secondary
school level.

In a graphical model, variables, parameters,
and relationships between them are represented by
means of a system of icons in a diagrammatic pic-
ture. The system of differential equations{

θ′ = ω
ω′ = α

where the angular acceleration α is equal to
(τ − I ′ω)/I, is, for example, represented in a
graphical model by the combination of icons
shown in figure 5.
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Figure 5. The skeleton of the graphical representation
of the system of differential equations that describes the
motion of the vaulter-pole system.

The direct relations are not directly visible
in figure 5: the connectors (thin arrows) indicate
the variables on which a quantity depends, but the
modeller has to enter the formula explicitly via a
formula editor. For example, the arrow from the
rectangle ω to the double arrow θ ′ represents the
identity θ ′ = ω and the arrow from the auxiliary
variable α to the double arrow ω ′ represents the
identity ω ′ = α. The arrows incoming at the aux-
iliary variable α indicate that α depends on the
variable ω, τ, I, and I ′. In fact, α= (τ − I ′ω)/I.

A major advantage of a graphical model is
that it provides a clear overview of the main struc-
ture of the mathematical model. Further explana-
tion of graphical modelling and discussion of its
use in education is beyond the scope of this paper.
The interested reader is referred to other publica-
tions [11–14].

The complete graphical model of the vaulter-
pole system that includes all parameters is shown
in figure 6. It can be used in computer simulations
to explore, for example, how the motion depends
on the initial angular speed ω0 for a given jump
at a given initial pole height r0, how climbing of
the vaulter affects this motion, and whether the
vaulter has enough time to climb to the top of the
pole for a given initial angular speed, initial pole
height, and climbing velocity u. In all computer
simulations, we assume a pole ofmaximum length
L= 13.25m and weight m= 20kg, and a vaulter
of weight M= 75kg jumping at the initial pole
height r0 = 8m.

We first use the computer model to experi-
mentally find a minimum initial angular speed ω0

needed to reach the vertical orientation for a jump
at pole height r0 without climbing, i.e. u= 0, and
with the the pole initially at the angle θ0 = 50◦.

Figure 6. The complete graphical model of the vaulter-
pole system used in computer simulations.

Figure 7. Model results for two nearby values of the
initial angular speed ω0, one leading to rotating back-
wards and one for a successful tipping over.

It turns out that ω0 = 0.7504429 rad s−1 leads to
a vaulter-pole system that stays long in a ver-
tical position and eventually does not tip over, but
rotates backwards (see figure 7). Of course, we are
curious how this result compares with the earlier
computed speed of the vaulter perpendicular to
the pole of vmin ≈ 6.7m s−1. The law of conserva-
tion of energy allows us to relate these two quant-
ities: the kinetic energy of the vaulter 1

2Mv
2 is

converted completely into rotational energy of the
vaulter-pole system 1

2 Iω
2, where I= 1

3mL
2 +Mr2

is the moment of inertia of the system. Simple
algebra leads to the following relation

vmin = ω0 ·
√
r20 +

1
3

(m
M

)
L2

Plugging in the values of the parameters
leads to

vmin ≈ 8.92ω0.
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Figure 8. Model results for three values of the initial
angular speed ω0: one leads to a backward rotation and
two other values are high enough for a successful tip-
ping over. One of the latter values is too high so that the
vaulter does not have enough time to climb to the top
of pole.

The speed of the vaulter computed from the ini-
tial angular speed by this formula turns out to be
in perfect agreement with the result derived in sec-
tion 2.2. A slightly higher initial angular speed of
ω0 = 0.751 rad s−1 leads to a jump in which the
vaulter-pole system tips over; see figure 7.

In the next experiment, we allow the vaulter
to climb in the direction of the top of the pole
with speed u= 1m s−1 as long as the pole angle
is between 60◦ and 120◦, i.e. we take in the model
β = 30◦ = 1

6π. In figure 8, the time-profiles of the
pole angle θ (in degrees) are shown, the angular
speedω, the pole height r, and the moment of iner-
tia I for varying values of the initial angular speed
ω0. When ω0 = 0.78 rad s−1, climbing to the top
of the pole results in this case in rotating back-
wards because the moment of inertia increases so
fast that the torsion stops the forward motion of
the vaulter-pole system and lets it rotate back-
wards. A small increase in initial angular speed,
i.e. taking ω0 = 0.785 rad s−1, suffices to have a
successful tipping over. When the initial angu-
lar speed ω0 is too high, say ω0 = 0.885 rad s−1,
then the vaulter does not have enough time to
climb all the way to the top of the pole; he can

only climb a distance of 2.36 m. This shows
how important an accurate initial angular speed
is for a successful and long distance jump and
how small the margin of error in angular speed
actually is.

4. Extension of the model: inclusion of
the release of the vaulter and computation
of the jumping distance
In the end, it is the jumping distance that counts
in a fierljep event. For this purpose, we extend the
previousmathematical model for a fierljep accom-
modation that has been designed for attaining long
jumping distances and the longest pole. As was
noted in section 2.1, this means that we have a run-
way at height 4m above the gravel bank, a sand
bed at height 1.75m above the gravel bank, and
the lowest allowed water level and that we assume
that the longest pole of size 13.25m is used. The
jumping distance depends on many variables, but
in order to be able to compute it through some
mathematical model, we first need to determine
at what horizontal distance from the end point of
the runway the pole is placed in the gravel bank.
Hereafter, we can extend the model of the rotat-
ing vaulter-pole system described in the previ-
ous section that computes the distance covered
after the vaulter releases the pole to land in the
sand bed.

4.1. Horizontal distance of the bottom end of
the pole

In section 2.1, we have explained by example how
a vaulter places the pole in the gravel bank: (s)he
places the pole such that (s)he touches the pole
at a predetermined pole height h0 when standing
upright with stretched out arms at height l0. We
can determine a formula for the horizontal dis-
tance of the bottom end of the pole depending on
l0 and h0. For this, we only need to apply basic
geometry and algebra.

Figure 9 illustrates the initial positioning of
the pole at distance dpole, before the pole holder
pushes it away from the end point of the runway
with platform height hp. We want to express dpole
in l0 and h0.
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Figure 9. Geometrical representation of the initial
placement of the pole.

The length of the hypotenuse of the lower-
right rectangular triangle in figure 9 can be com-
puted via Pythagoras’ theorem and is equal to√
dpole

2 + hp
2. This triangle is similar to the large

rectangular triangle with the vertical side of length
l0 + hp and hypotenuse of length h0. Therefore we
have the following equation of ratios:√

dpole
2 + h2p

hp
=

h0
l0 + hp

.

Simple algebraic manipulation leads to:

dpole = hp ·

√
h20

(l0 + hp)
2 − 1 .

4.2. Motion after releasing the pole

Just as we have done in section 2.2, where we
looked at a special case of the dynamics of the
rotating vaulter-pole system, we first explore a
special case to come to grips with motion after the
vaulter releases the pole. Hereafter, we extend the
graphical model of section 3 to include the release

of the vaulter and the calculation of the jumping
distance.

4.2.1. Release when a vaulter passes the tipping
point of the vaulter-pole system at maximum pole
height. We consider the special case in which a
vaulter performs such that (s)he passes the tipping
point of the vaulter-pole system with an angular
speed ω 1

2π
at maximum height L, and releases the

pole at angle φ, while pushing off against the pole
with an impulse J. In this special case, we apply
basic physics principles and simple mathematics
to compute the distance covered by the vaulter
after passing the tipping point under the assump-
tion that friction does not play any role.

First, we apply the law of conservation of
energy for the motion of vaulter-pole system to
determine the angular speed ωφ at some release
angle 1

2π. When the vaulter-pole system passes
the tipping point, the total energy is the sum of
the gravitational potential energy (set zero at the
bottom end of the pole) and the rotational energy
of the system:

1
2
mgL+MgL+

1
2
Iω2

1
2π
,

where

I= Ipole + Ivaulter =
1
3
mL2 +ML2.

The vaulter releases the pole at angle φ and thus
at height h= Lsinφ. At that moment, the angular
speed ωφ has been reached and we can determine
the total energy at release:

1
2
mgh+Mgh+

1
2
Iω2

φ

Equality of both total energies leads to an equation
in which the angular speed ωφ can be isolated via
simple algebra as

ωφ =

√
ω2

1
2π

+
gL(m+ 2M)(1− sinφ)

I

Once we know the angular speed ωφ at release,
we can also determine the horizontal and ver-
tical components (vx and vy, respectively) of the
vaulter’s speed at release:

vx = ωφLsinφ− J
M

cosφ
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and

vy = ωφLcosφ+
J
M

sinφ.

The second term in the horizontal and vertical
speed is the contribution of the impulse J of
pushing-off against the pole at release.Wewill use
the value of 120 Ns, reported in [7] for the impulse
of a professional vaulter, in calculations. This
means that a vaulter weighing 75kg and pushing
off delivers an extra radial velocity of 1.6m s−1.

The vertical speed vy at release can be used
to compute the time tfall needed for the vaulter to
land at the sand bed at height hsb on the basis of
free fall formulas:

hsb =−1
2
g · t2fall + vy · tfall + h,

which can be rewritten as quadratic equation

1
2
g · t2fall − vy · tfall − (h− hsb) = 0.

Then the quadratric formula leads to the following
tfall:

tfall =
vy+

√
v2y + 2g(h− hsb)

g
,

where all variables on the right-hand side can be
determined from earlier formulas.

Knowing the time tfall between the release
and landing of the vaulter, the horizontal distance
covered during this part of the jump can be eas-
ily computed as vx · tfall . Adding it all up, we can
write down a formula for the jumping distance
jump:

djump = dpole −Lcosφ+ vx · tfall,

where the horizontal distance of the bottom
end of the pole has already been determined in
section 4.1 as

dpole = hp ·

√
h20

(l0 + hp)
2 − 1.

The second term is the horizontal distance covered
by the vaulter-pole system when the pole angle
increases from 90◦ to the release angle φ, and
the third term is the contribution to the jumping

distance of the motion of the jumper after release.
For the latter part of the formula of the jumping
distance, we can use all of the mathematical for-
mulas derived in this section.

We can use the formulas to explore the effect
of the release angle on the jumping distance.
We do this by example and assume a platform
at height hp = 4m; a sand bed at height hsb =
1.75m; a pole of length L= 13.25m and mass
m= 20kg; a vaulter withmassM= 75kg and ver-
tical reach l0 = 2.24m, choosing a predetermined
pole height h0 = 11.25m for pole placement, and
an initial pole height r0 = 8m, and who delivers
an impulse J= 120Ns when pushing-off against
the pole at release; the acceleration of gravity
g= 9.81ms−2; and an angular speed when the
vaulter-pole system tips over ω 1

2π
= 0.01rad s−1.

For every admissible release angle, say between
90 and 170◦, we can now compute the jumping
distance.

The red graph in figure 10 has been computed
in case the vaulter releases the pole without push-
ing off (J= 0Ns). The graph shows that releasing
the pole at maximum height at a release angle of
90◦ actually makes no sense as you land in the
water at a distance of 6.2 m. When the vaulter
sticks to the pole and releases it when (s)he is close
to the sand bed, say at a release angle of 170◦,
then the jumping distance is already 19.15 m. The
optimal release angle is in this example equal to
137.7◦ and it leads to the maximum jumping dis-
tance of 20.18 m. Note that the release angle is
greater than 135◦, which means that the vaulter is
advised to release somewhat later than halfway.

The blue graph in figure 10 has been com-
puted in case the vaulter releases the pole push-
ing off with maximum impulse (J= 120Ns). The
graph shows that releasing the pole at maximum
height at a release angle of 90◦ leads to a com-
puted distance almost the same as before, namely
6.23m. When the vaulter sticks to the pole and
releases it at the latest moment, say at a release
angle of 170◦, then the jumping distance is again
almost the same as before, namely 19.23m. The
optimal release angle is in this example equal
to 133.7◦ and it leads to the maximum jumping
distance of 21.52m, which is substantially larger
than before. Note that, contrary to the earlier case
with the red graph, the release angle is less than
135◦, which means that the vaulter is advised to
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Figure 10. Graphs of jumping distance versus release
angle φ when the vaulter does not push off at release
(red graph) andwhen the vaulter does push off at release
(blue graph). In the latter case, the optimal release angle
is 133.7◦ and leads to a distance of 21.51 m. The orange
dashed line indicates that all jumps are further than 21m
for a release angles between 125.0◦ and 144.7◦.

release somewhat earlier than halfway. The mar-
gin of error in the release angle when a jump-
ing distance of 21 m is strived for is interesting.
In this case, the release angle must be between
125.0◦ and 144.7◦, as indicated in figure 10 by
the orange dashed line. This large margin of error
exists because the jumping distance performance
benefits from releasing at a high point, as well as
from sticking to the pole and increasing the angu-
lar speed.

Another exploration of the problem situation
is the effect of the impulse of pushing off the pole
at release on the jumping distance. We use the
above conditions with release angle φ= 135◦ and
vary the impulse. Figure 11 shows the model res-
ults and it is clear that investing in muscle power
of the arms to push off harder certainly pays off.
A very weak impulse of 20Ns or a strong impulse
of 121Ns makes a difference in jumping distance
of 1.10m.

4.2.2. Extension of the computer model. When
you watch some video clips of fierljep jumps, you
will quickly notice that the assumptions made in
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Figure 11. Graph of jumping distance versus impulse
of the vaulter pushing off at release angle 135◦.

Figure 12. The graphical model of the motion of a
vaulter from the moment that (s)he grabs the pole and
gets the pole between the legs until the landing in the
sand bed.

the section 4.2.1 are hardly ever met: vaulters in
most jumps do not have enough time to climb
to the top of the pole before the tipping point
is reached and therefore they continue climbing
towards the top of the pile. How interesting the
theoretical interlude of section 4.2.1 may be—
it shows what can be achieved by basic con-
cepts of physics and mathematics and gives some
insight in the problem situation—we cannot avoid
extending our computer model of the rotating
vaulter-pole system described in section 3. But in
a modern graphical modelling environment such
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Figure 13. The distance-time graph of the fierljep jump
from the moment that the vaulter grabs the pole and
gets the pole between their legs until the landing in the
sand bed.

as Coach [10, 11], this turns out to be surprisingly
easy.

In essence, all we have to do is to construct a
graphical model of a frictionless flight starting at
height h= rsinφ with an initial horizontal speed
vx = ωφrsinφ− J/Mcosφ and with an initial ver-
tical speed vy = ωφrcosφ+ J/Msinφ, where r
and ωφ are the pole height and the angular speed
at release angle φ, respectively. The values of r
and ωφ are computed by the already constructed
pole-vaulter model. Then we simulate the exten-
ded model until the y-coordinate of the vaulter
in free fall reaches the height of the sand bed.
The x-coordinate is at that moment the horizontal
distance covered by the vaulter during the free
fall. Knowing the horizontal distance of the bot-
tom of the pole and the pole height of the vaulter
at all angles, including the release angle, we can
compute the jumping distance at any stage of the
motion.

The extended graphical model is shown in
figure 12. It contains new graphical elements. The
vaulter-pole model box contains the subsystem
that models the motion when the vaulter is in
contact with the pole and is in fact the graphical
model shown in figure 6. In teaching and learn-
ingmodelling, the use of subsystems is convenient
when students are step by step introduced to the
details of a model or when they gradually extend
themselves a model while trying to keep a good
overview of the whole system. This is what we do
here too: using the subsystem, we can focus on the

1.00

21.52 jumping distance (m)

climbing speed  m s−1

21.51
21.50
21.49
21.48
21.47
21.46
21.45
21.44
21.43
21.42
21.41
21.40

1.05 1.10 1.15 1.20 1.25

Figure 14. The distance-climbing speed graph of the
fierljep jump for climbing speeds fast enough to bring
the vaulter to the top of the pole and small enough to let
the vaulter-pole system still pass the tipping point for
the given initial angular speed.

graphical model for the free fall of the vaulter after
release.

The second new graphical element is
the event icon (the thunderbolt icon labelled
‘Release’). At the discrete time event when the
pole angle becomes greater than the release angle,
the variables connected with the free fall motion
of the vaulter (horizontal and vertical positions
and velocities) are instantly updated to their initial
values for the free fall. For example, the variables
x and vx are instantly changed from 0 to −rcosφ
andωφrsinφ− J/Mcosφ, respectively. These are
once-only actions, after which the programmed
dynamics of the free fall takes over. The flight
phase is indicated in the model by the Boolean
variable ‘flight?’, with a value equal to the evalu-
ation of the expression (θ > φ)∧ (y> ysb). Dur-
ing the flight phase, the change in the vertical
velocity, i.e. the vertical acceleration, is equal to
the negative of the acceleration of gravity. With
no air fraction, the horizontal velocity is constant.

During flight, the distance covered by the
vaulter is equal to the value of the variable x.
While the vaulter is in touch with the pole, the
horizontal distance covered by the vaulter with
respect to the horizontal position of the bottom of
the pole is equal to the value of the expression
−rcosθ, where r and θ are the pole height and
pole angle, respectively, during the vaulter’s con-
tact with the pole. In order to compute the jump-
ing distance during the motion, we only need to
implement the formula derived for the horizontal
distance of the bottom of the pole.
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This computer model can be used to simu-
late a jump. In figure 13 the distance-time graph
for the following parameter choices is shown:
initial angular speed ω0 = 0.79 rad/s, climbing
speed u= 1.2m s−1, angle β = 30◦ = 1

6π rad, and
release angle φ= 133◦ = 133

180π rad. All other
parameters have values chosen before. In this
case, the pole vaulter reaches the top of the pole
just after it has passed the tipping point (φ= 93◦).
We can read off the final jumping distance of
21.51m, which is very close to the value computed
in the simpler model of section 4.2.1.

The extended model offers a larger space
for experimentation with jumping conditions. For
example, we can explore the effect of climbing
speed while all other conditions are kept the same
as in the computer simulation discussed above.
When the climbing speed is u= 1.01m s−1, the
vaulter just misses the top of the pole for 2cm,
but the jumping distance is 10 cm less than
the longest jump for climbing speeds between
1.22 and 1.25m s−1. When the climbing speed is
1.26m s−1 or more, the vaulter-pole system does
not pass the tipping point and the jump is unsuc-
cessful. In figure 14, the computed jumping dis-
tance has been plotted against the climbing speed
for which the vaulter reaches the top of the pole.
From the graph, it is clear that the vaulter better
climbs as fast as possible to the top of the pole
under the restriction that the climbing speed does
not exceed some value at which the vaulter-pole
system does not tip over anymore. Once the climb-
ing speed passes some threshold (here around
1.1m s−1), the jumping distance remains almost
the same.

5. Discussion
In this article, we carried out a biomechanical
analysis of vaulting for distance. To this end,
we have first reduced the problem situation of a
fierljep jump to a manageable problem that can
be studied via fundamental concepts of physics
and mathematics. Some of our models provided
explicit formulas for jumping distance, while oth-
ers gave us an equation of motion to be solved
numerically via some tool, in our case the graph-
ical system dynamics-based modelling tool of
the Coach environment for mathematics and sci-
ence. How interesting the biomechanical analysis

and the obtained results are—it is fair to ask
how relevant the presented work is to physics
education, in particular at secondary level, and
whether it is not too difficult for secondary physics
students.

The answer to the first question depends
on the vision on physics education. Internation-
ally, models and modelling occupy an important
place in physics curricula programs because of
the increasing importance of models and model-
ling in science and technology. Modelling as com-
petence encompasses both the cognitive compon-
ent of thinking in models and the practical skill
of modelling. Computer modelling, an import-
ant ingredient of scientific research, is in this
vision a concrete form of applying a model-
ling approach to problems and should be part
of physics curricula (and, in fact, is a man-
datory part of the Dutch physics curriculum
since 2016). A GIREP conference was dedic-
ated entirely to modelling in physics and physics
education [15].

In this paper, we have illustrated that pole
vaulting for distance is a subject that offers
opportunities to do modelling and use models
for understanding of a sports motion. We have
gone through various phases of a modelling cycle
and have constructed more than one model to
explore (part of) the problem situation. All mod-
els were based on fundamental physics concepts
such gravity, Newton’s laws of motion, conser-
vation of energy, impulse, and angular kinetics.
Regarding these aspects, the biomechanical ana-
lysis serves students as an interesting example of
how physics helps understand complex motions.
Hopefully it makes them realize that the model-
ling process, the underlying thinking processes,
and the discussions with fellow students dur-
ing their work are as important as the obtained
results. Yet it is gratifying when experiment,
observation, model and theory are in agreement,
as is the case in our study of pole vaulting for
distance.

Sport remains an interesting topic for stu-
dents as a subject of individual or team work.
The combination of sports and physics offers
several attractive ingredients for teaching and
learning physics at all levels of education, ran-
ging from primary to university level. These
cover topics like sports activities as experiments,
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video analysis, and modelling. Literature about
the combination of physics and sports is vast:
see for example [16] and references herein,
and the many books entitled ‘Physics and
…’. Do a literature search on IOPscience
(https://iopscience.iop.org) applying the filter
‘Physics Education’ and using the keyword
‘sport’: you will find beautiful examples. The
authors of this paper have also written several
papers on this subject [17–21].

Let us linger upon the difficulty level for sec-
ondary physics students. We believe that in par-
ticular the energy exchanges between vaulter and
pole are challenging but not too complicated for
students. We are not alone: the Dutch national
physics examination at lower vocational level in
2018 contains the following task about a fierljep
jump. Assuming that the vaulter with a mass of
72 kg climbs a distance of 240 cm to the top of
the pole while this pole is in vertical position, cal-
culate the minimum work done by the vaulter.
Other questions had to do with the landing phase
when the vaulter bends the knees. For example, in
a multiple choice question, students were asked
with what safety measure in a car the function
of bending the knees at landing corresponds: the
head rest, the cage, or the crushable zone?

Models and modelling also offer great
opportunities in computer exams [22]. Given a
computer model and running simulations, it is
important that students are able to assess qualitat-
ively whether the applied modelling approxima-
tions are justified or yield an oversimplification of
the problem. Students can be asked to use mod-
els to answer specific questions, to complete the
model by specifying extra lines of code, or to
extend a computer model by applying their phys-
ics knowledge and extra graphical modelling. In
our case of pole vaulting for distance, students
could be asked to give boundary or stop condi-
tions at different stages of the pole vault, or to
extend one of the presented models so that the
effect of head or tail wind on the jumping per-
formance is included.

But what is maybemost important and should
not be forgotten is that combining physics and
sports is fun formany students. It often has a posit-
ive effect on their motivation because they can act
as practitioners in the field of sports biomechanics
in rather authentic activities. Physics teachers can

join in at these activities in several ways: as
a source of physics knowledge, as a guide to stu-
dents, as a project manager, as a client with a
sports-related question, and as a participant. These
might be welcome changes in the traditional roles
of a physics teacher.
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[11] Heck A, Kędzierska E and Ellermeijer T 2009
Design and implementation of an integrated
computer working environment J. Comput.
Math. Sci. Teach. 28 147

[12] Heck A 2012 Perspectives on an integrated
computer learning environment Doctoral
Thesis University of Amsterdam
(https://dare.uva.nl/record/409820)

[13] Van Buuren O 2014 Development of a modelling
learning path Doctoral Thesis University of
Amsterdam (https://dare.uva.nl/record/1/
416568)

July 2020 15 Phys. Educ. 55 (2020) 045007

https://iopscience.iop.org
https://doi.org/10.1088/1361-6552/ab7fc7
https://scholarlycommons.pacific.edu/uop_etds/141
https://scholarlycommons.pacific.edu/uop_etds/141
https://www.nederlandsefierljepbond.nl/index.php/reglementen
https://www.nederlandsefierljepbond.nl/index.php/reglementen
https://doi.org/10.1080/14763141.2010.492430
https://doi.org/10.1080/14763141.2010.492430
https://d-nb.info/107086353X/34
https://d-nb.info/107086353X/34
https://www.nederlandsefierljepbond.nl/documenten/nieuws/2020/rqoatta4les4cwcc8.pdf
https://www.nederlandsefierljepbond.nl/documenten/nieuws/2020/rqoatta4les4cwcc8.pdf
https://www.nederlandsefierljepbond.nl/documenten/nieuws/2020/rqoatta4les4cwcc8.pdf
https://doi.org/10.1123/jab.10.4.323
https://doi.org/10.1123/jab.10.4.323
https://dare.uva.nl/record/409820
https://dare.uva.nl/record/1/416568
https://dare.uva.nl/record/1/416568


A Heck and P Uylings

[14] Van Buuren O and Heck A 2019 Computer
modelling in physics education: dealing
with complexity Concepts, Strategies and
Models to Enhance Physics Teaching
and Learning ed E McLoughlin and
P van Kampen (Springer: Cham) pp 87–99

[15] van den Berg E and Ellermeijer A 2006
Modelling in Physics and Physics Education
Proc. GIREP ed O Slooten (Amsterdam:
University of Amsterdam)

[16] Mathelitsch L 2014 Sport and physics Active
Learning—In a Changing World of New
Technologies ICPE—EPEC 2013 Proc. ed L
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